CERTIFICATE **Certified Passive House Component** Component-ID 1109ds02 valid until 31st December 2019 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany Category: **Door system** Manufacturer: pro Passivhausfenster GmbH Oberaudorf Germany Product name: smartwin entrance # This certificate was awarded based on the following criteria for the cold climate zone Comfort $U_D = 0.51 \le 0.60 \text{ W/(m}^2 \text{ K)}$ $U_{D,\text{installed}} \leq 0.65 \, \text{W/(m}^2 \, \text{K)}$ with $U_{\text{door leaf}}^{1} = 0.33 \, \text{W/(m}^2 \, \text{K)}$ Hygiene $f_{Rsi=0.25}$ ≥ 0.75 Airtightness $Q_{100} = 0.6 \leq 2.25 \,\mathrm{m}^3/(\mathrm{h}\,\mathrm{m})$ (Inward opening) ¹U-value of the insulated area of door leaf Martin-Greif-Straße 20, 83080 Oberaudorf, Germany 🕿 +49 (0)8033 / 304098 | 🖂 phc@freundorfer.eu | 🖆 http://www.propassivhausfenster.net | ### **Description** Spruce/Fir-Aluminum frame, insulated by wood fibre board (0.040 W/(mK)). Door leaf from timber-Aluminum composit, insulated by PU-foam (0.027 W/(mK)) Glazing of fixed part: 4/18/4/18/4, Ug=0.52 W/(m²K). At the threshold (determined with installation) and the narrow mullion, the temperature facort for the cold climate is not achieved. Never the less, this values are much better than usual. Byond the requirements, airtightness class 4 according to EN 12207 is achieved. #### **Explanation** The U-values of the door apply to a combination of door and sidelight with fixed glazing, 2.20 m wide by 2.20 m tall. The door and the sidelight are both 1.10 m wide. A detailed report of the calculations performed in the context of certification is available from the manufacturer. Unless stated otherwise, the air tightness was determined according to EN 1026 with respect to the joint length under climate load in conjunction with EN 1121 for the closed, non-locked door. The result corresponds at least to air-tightness class 3 according to EN 12207. The Passive House Institute has defined international component criteria for seven climate zones. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. In a particular climate zone it may make sense to use a component of a higher thermal quality which has been certified for a climate zone with more stringent requirements. Further information relating to certification can be found on www.passivehouse.com and passipedia.org. | Frame values | | | Frame width
<i>b_f</i>
mm | <i>U</i> -value frame
<i>U_f</i>
W/(m² K) | Ψ edge Ψ_g W/(m K) | Temp. Factor $f_{Rsi=0.25}$ [-] | |------------------------------------|-----------------------------|------------|---|---|------------------------------|---------------------------------| | Тор | (to) | Ť | 86 | 0.64 | 0.005 | 0.87 | | Top
fixed | (tof) | T | 86 | 0.52 | 0.021 | 0.78 | | Side
fixed | (sf) | - | 86 | 0.52 | 0.021 | 0.78 | | Bottom
fixed | (bof) | 1 | 86 | 0.69 | 0.021 | 0.76 | | Threshold | (th) | 1 | 65 | 1.28 | 0.001 | 0.68 | | Hinge side | (hs) | U — | 86 | 0.64 | 0.005 | 0.87 | | Lock side | (ls) | | 176 | 0.59 | 0.000 | 0.86 | | Mullion
flying | (fm) | 7 | 152 | 0.70 | 0.014 | 0.89 | | Mullion
1 casement | (m1) | -7 | 110 | 0.78 | 0.014 | 0.74 | | Mullion
1 casement Variant
1 | (m1) | -7 | 172 | 0.60 | 0.013 | 0.77 | | | Spacer: SWISSPACER Ultimate | | | Secondary seal: Polyurethane | | | # Side $b_f = 0$ $$\Psi_g = 0.021 \, \text{W/(m K)}$$ $$f_{Rsi}=0.78$$ ## 1 ## Bottom $$b_f = 86.00 \, \text{mm}$$ $$U_f = 0.69 \, \text{W/(m}^2 \, \text{K)}$$ $$\Psi_g$$ = 0.021 W/(m K) $$f_{Rsi}=0.76$$ #### Threshold $$b_f = 65.00 \, \text{mm}$$ $$U_f = 1.28 \, \text{W/(m}^2 \, \text{K)}$$ $$\Psi_g$$ = 0.001 W/(m K) $$f_{Rsi} = 0.68$$ # Hinge side $$b_f = 86.00 \, \text{mm}$$ $$U_f = 0.64 \, \text{W/(m}^2 \, \text{K)}$$ $$\Psi_g = 0.005 \, \text{W/(m K)}$$ $$f_{Rsi} = 0.87$$ ## Lock side $$b_f = 176.00 \,\mathrm{mm}$$ $$U_f = 0.59 \, \text{W/(m}^2 \, \text{K)}$$ $$\Psi_g = 0.000 \, \text{W/(m K)}$$ $$f_{Rsi} = 0.86$$ #### Validated installations